
Lecture- 7

Laplace’ and Poisson’s Equations
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Derivation

We have the differential form of Gauss’ law

Using D = ε E and  E = - in the above equation, we get

This is the Poisson’s Equation
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In free space , this equation becomes,

This equation is called the Laplace’ equation.

is called the Laplacian operator or simply Laplacian.

Note that the ‘del’ operator       is defined only in the
rectangular coordinates only, as
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The Laplacian in the  three coordinate systems are

2 2 2
2

2 2 2

  
  

  
= ( )cartesian

x y z

2 2
2

2 2 2

1


    

    
   

    

1
= ( )Cylindrical

z

2
2 2

2 2 2 2 2

1 1


    

       
     

       

1
= sin ( )

sin sin
r Spherical

r r r r r

Pradeep Singla



We look for one dimensional solution of  Laplace’ equation in 
each of the three coordinate systems, starting first from the 
rectangular coordinate system. That is, 
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Applications

--- (1)

V is a function of only one variable and is independent of the 
other two variables. Under this condition, in rectangular 
coordinate system the Laplace’ equation  reduces to
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One dimensional solution of Laplace’ Equation  in 
rectangular coordinate system

Let V be a function of z only. Then in Rectangular  coordinate 
system,the Laplace’s Equation reduces to
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Since V is a function of z only, it is independent 

of x and y. Therefore,

Integrating  both sides once we get

--- (2)
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Equation (3) represents a family of  equi – potential  surfaces

with z taking up constant values

dV
A

dz


Integrating  both sides once again, we get

,        A is an arbitrary constant                    --- (3)

V Az B  ,   B is an arbitrary constant                   --- (4)

A and B are arbitrary constants to be evaluated under suitable 
boundary conditions.
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Consider two such equi – potential  surfaces one at z = z1 and the 
other at z = z2. Let V= V1 at z = z1 and V = V2 at z = z2.

We immediately recognize that this is the case with a parallel 
plate capacitor with a plate separation of z1 - z2 = d and a 
potential difference V1 - V2 .

Applying the above two conditions, called boundary conditions, 
we get,
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Solving equations (5) and (6) we get the values for A and B as
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Substituting the values of A and B in equation (4) we get,
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Further let, for simplicity, V1 = 0 and z1 = 0, V2 = Va

Then equation (7) reduces to

aV
V z

d


We find that V is a linear function of z

V  = V2 = Va

V  = V1 = 0

d

z = z2

z = z1
Fig 1 Parallel plate capacitor

--- (8)
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Since we have an expression for the potential at any point
between the plates of a parallel plate capacitor, we can make 

use of it to determine the capacitance of the parallel plate 

capacitor by following the steps:

1  Given V, Determine E using the formula  E = -  V

2  Determine D using D = ε E

3 Find D on any one of the plates, D = DS= DS aS = DN aN

on the chosen plate,  and recognising that DN = ρS

4 Determine Q by surface integration of ρS over the surface
area of the chosen plate using 

5 Compute the capacitance using the formula
a
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Applying these five steps to the parallel plate capacitor we get,
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Therefore the capacitance of the parallel plate capacitor is
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