Lecture- /

Laplace’ and Poisson’s Equations
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Derivation

We have the differential form of Gauss’ law

V.D=p

UsingD=€¢E and E=-  VV in the above equation, we get

VID=VIEE =&eV(-VV)=-cV¥V = p
or

VV = — —This is the Poisson’s Equation
E
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In free space, this equation becomes,

VAV =0

This equation is called the Laplace’ equation.

VIZS called the Laplacian operator or simply Laplacian.

Note that the ‘del’ operator _\j5 defined only in the
rectangular coordinates only, as

V:ET+£T+EIZ
OX oy Oz
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The Laplacian in the three coordinate systems are
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Applications

We look for one dimensional solution of Laplace’ equation in
each of the three coordinate systems, starting first from the
rectangular coordinate system. That is,

Vis a function of only one variable and is independent of the
other two variables. Under this condition, in rectangular
coordinate system the Laplace’ equation reduces to

2
VAV = az\g a\g oV =0  (cartesian) - (1)
ox>  oy* oz°
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One dimensional solution of Laplace’ Equation in

rectangular coordinate system

Let V be a function of z only. Then in Rectangular coordinate
system,the Laplace’s Equation reduces to

VAV = ON _ O
O0z? - (2)

Since V is a function of z only, it is independent

of x and y. Therefore,

Integrating both sides once we get
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dvVv

_— = A, A is an arbitrary constant - (3)

dz

Integrating both sides once again, we get

V = AZ + B Bisanarbitrary constant -- (4)

A and B are arbitrary constants to be evaluated under suitable
boundary conditions.

Equation (3) represents a family of equi— potential surfaces

with z taking up constant values
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Consider two such equi — potential surfaces one at z =z, and the
otheratz=z, LetV=V,atz=z,andV=V,atz=7z,.

We immediately recognize that this is the case with a parallel

plate capacitor with a plate separation of z,-z,=d and a
potential difference V, - V,.

Applying the above two conditions, called boundary conditions,
we get,

V =V,=Az,+B - (5)
V=V,=Az,+B - (6)
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Solving equations (5) and (6) we get the values for A and B as

A — V2 _Vl
Z, —Z,
B — V122 _vzzl
Z, — 2,4

Substituting the values of A and B in equation (4) we get,
V, —V. V,z, —V,z,

V=—217+
Z, — 4, Z, — 4
_Vo(z—-2)-V,(z—-7Z,) —(7)

Zz _21
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Further let, for simplicity, V,=0and z, =0, V, =V,

V=V,=0
Fig 1 Parallel plate capacitor

Then equation (7) reduces to

\V4 :V_a 4
d

We find that V is a linear function of z
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Since we have an expression for the potential at any point
between the plates of a parallel plate capacitor, we can make

use of it to determine the capacitance of the parallel plate
capacitor by following the steps:

1 GivenV, Determine E using the formula E=-V V

2 DetermineD usingD=¢E

3 Find D on any one of the plates, D = D= Ds a = D, a
on the chosen plate, and recognising that Dy = p«

4 Determine Q by surface integration of p. over the surface
area of the chosen plate using Q= jdeS
S

5 Compute the capacitance using the formula C = |\(/2_|
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Applying these five steps to the parallel plate capacitor we get,

Vv =V 2%
d
E:—szﬁéz
d
D=:E=—cYag
d
_ _ \V2 _ _
Dg = DZ_O :—gFaaz = Dgsag = Dyay;Dy = o
\V4 V
sz—g\édsz—g—aj.dSZ—g—aS
. 7 d d : d

Therefore the capacitance of the parallel plate capacitor is

c_Rl_es
V d

a
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